

Dark Gas paper 2 [CII] paper 4 G₀ paper 1 Chemistry paper 2 STO paper 1 GUSTO paper 1

STARS

CARS

and PDRs

Introduction to PDRs: - What are they? Where are they found?

and PDRs

Introduction to PDRs: - What are they? Where are they found?

Structure and Chemistry, Heating Processes, Cooling Processes and Dominant Cooling Lines, Variation with density and radiation field

and **PDRs**

Introduction to PDRs: - What are they? Where are they found?

Structure and Chemistry, Heating Processes, Cooling Processes and Dominant Cooling Lines, Variation with density and radiation field

Questions and Problems in Modeling

Stock, Habart, Chevance, Fuente, Guzman

Protostellar Outflows van Kempen et al. 2010 Visser et al. 2012 Karska et al. 2014

Protostellar Disks

Gorti, Hollenbach et al. 2011 Kamp et al. 2013 Bruderer et al. 2012 Adams, Hollenbach et al. 2004 PDR disk heating, chemistry, & structure

Tielens & Hollenbach 1985

Diagnostics: C⁺ 158 μm, OI 63 μm Herschel H₂: Hollenbach & Salpeter 1971 609 μm, 370 μm Herschel C H₂, C⁺: Wolfire, Tielens, Holllenbach, HEAT **& Kaufman 2008** H, 0-0 S(2) 12.3 μm Spitzer H₂: Burton, Hollenbach, & Tielens 1990, 1992 **SOFIA** OH⁺, H₂O⁺, and H₃O⁺: Hollenbach et al. H,O, H,O⁺,OH⁺ Herschel 2012

O₂ : Hollenbach et al. 2009 Melnick et al. 2012 Freeze-out: Hollenbach et al. 2009

Tielens, Meixner, et al. 1993

Peeters, E. 2011 3.3, 6.2, 7.7, 8.6, 11.3, 12.7 µm

Habart et al. 2010

PAHs:

Puget & Leger 1989 Allamandola et al. 1989 Joblin et al. 1996 Verstraete et al. 2001 Peeters et al. 2004 Cami et al. 2010

H₂:

Dinerstein et al. 1988 Sternberg & Dalgarno 1989 Burton, Hollenbach et al. 1992 Goldsmith et al. 2010 Habart et al. 2011 Sheffer, et al. 2011

CO:

Harris et el. 1987 Jaffe et al. 1989 Schneider et al. 2003 Pon et al. 2015

Electron K.E. is a function of the grain charge.

Charge: Photoionization = Recombination Photoionization α UV photon field $[G_0]$ Recombination α $n_e/T^{1/2}$ Photoionization/Recombination α $G_0T^{1/2}/n_e$

- ε = Energy to Heating/Absorbed UV Photon Energy= Heating Efficiency
- **\epsilon** is a function of $G_0 T^{1/2}/n_e$ (Photoionization/Recombination)

Bakes & Tielens (94) ε for a = 0.25 μm -> 5 A Weingartner & Draine (01)

(Ionization/Recombination)

1/2 Heating from smallest grain sizes < 15 A
1) Yield increases as grain size decreases
2) Ionization/Recombination goes as (grain size)²

$$n\Gamma = 1.3 \times 10^{-24} n\epsilon G_0 \text{ (erg cm}^{-3} \text{ s}^{-1})$$

POLYCYCLIC AROMATIC HYDROCARBONS AND THE UNIDENTIFIED INFRARED EMISSION BANDS: AUTO EXHAUST ALONG THE MILKY WAY!

L. J. ALLAMANDOLA¹ AND A. G. G. M. TIELENS Space Science Division, NASA/Ames Research Center

AND

J. R. BARKER Department of Chemical Kinetics, SRI International Received 1984 October 19; accepted 1984 November 27

1985 ApJ

"The close agreement...is strong circumstantial evidence that they arise from similar groups of species" (PAHs)

H_2 Formation: HI combines to H_2 on grain surfaces Dissociation: Const G_0 β[N(H₂)] exp (-2.5 Av)

 $\tau_{LW} = N(H_2)/(1.2 \text{ x } 10^{14} \text{ cm}^{-2})$ $\tau_{\rm LW} > 1$ H, "Self-shielding" $\beta[N(H_2)] = [N(H_2)/10^{14}]^{-0.75}$ Draine & Bertoldi 1996 **Column density where H**₂ forms: $f(G_0/n)$ **Sternberg & Dalgarno 1989 Sternberg 2012 Heating:** Formation **Dissociation De-excitation Burton, Hollenbach, & Tielens 1990**

Tielens & Hollenbach 1985

Tielens & Hollenbach 1985 Kaufman, Wolfire, & Hollenbach 2006 Hollenbach et al. 2009 Hollenbach et al. 2012

Meudon: Le Petit et al. 2006

KOSMA-Tau: Sterberg & Dalgarno 1995 Rollig et al. 2006

Leiden: Meijerink et al. 2007

UCL: Viti et al. 2014

Heating Efficiency

PDR Emission

Kaufman, Wolfire, Hollenbach & Luhman 1999

Problems in PDR Modeling

1)Photoelectric Heating rate at Av = 0, and as a function of depth?

Weingartner & Draine 2000

Good agreement in CNM confirmed by observed P_{th} and I(CII) Some divergence at high G₀/n Heating rate with Av 1)PAH and grain properties and abundances 2) Penetration of FUV

Models get 0.1-1% of FIR coming out in lines as observed

Need observations of species that sample a range of Av

2)High-J CO and H₂ line emission

Sheffer, Wolfire, Hollenbach, Kaufman & Cordier 2011

PE with depth ?, H₂ heating? Other processes?

Stock et al. 2015

3)[OI] 63 µm ??

OI Self-absorption High OI 145/63 ratios

Column of cold O depends on 1)Geometry 2)C/O ratio 3)Oxygen freeze out

Ossenkopf et al. 2015

4)[Si II] 35 µm ?? Models overestimate [Si II] Draine & Bertoldi 2000 large depletions? Kaufman et al. 2006 Sheffer et al. 2011

Hollenbach Shoe Store Heidelberg Germany

Dave's birth site according to local legend.

Thanks Dave!

...for many years of stimulating and productive collaborations!